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Sampled from 3D Seismic Data and from Parallel 2D
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Abstract

This research examines the accuracy of contour maps
subsampled from a 3D seismic survey. A 3D seismic data set
was interpreted using LANDMARK's "Seisworks-3D"
software to build three contour surfaces of stratigraphic
horizons at various depths and structural complexities.
These horizons were exported and imported to a
Geographic Information System (GIS), resampled at various
in-line and cross-line, and point spacings, and interpolated
to create 3D surface grids from these subsamples of the
horizons to simulate interpolation from 2D seismic lines.

In the first set of experiments, for both transect and point
data structures, map error decreased as a power function
of sample size. This systematic increase in error as sample
size decreases allows prediction of the accuracy of
interpolation according to sample size and distribution of
the data. This relationship facilitates estimation of errors
for seismic data interpreters picking a subsample of
sections for a particular stratigraphic horizon,
determination of receiver and line spacings for sufficient
survey accuracy for least economic outlay. Another
application of this relationship is to determine the
accuracy of interpolative contour mapping on a series of
parallel 2D seismic lines according to their spacing.

In a second set of experiments on the point data of a set
sample size, map error increased with the local structural
complexity of strata sampled. This relationship would allow
prediction of the relative precision expected in areas of
varying complexity. These findings corroborate earlier
work on topographic maps and indicate that similar trade
offs between map accuracy and both sample size and
surface complexity apply to 3D geologicalal blocks.

Introduction

There has been a lot of cartographic research on the nature
of errors associated with sampling strategies. Most studies
of sampling errors have been performed on 2D or 2.5D
topographic data sets as defined by Raper and Kelk (1991)
where there can only be one z value for each x, y
coordinate. It has been shown in these studies that higher
sampling densities produce more accurate maps, however,
the relationship between sampling interval and accuracy is
not linear but exponential. For example, MacEachren and
Davidson (1987) carried out research to evaluate the effect
of sampling density on topographic contour interpolation
error. They also examined the effect of the complexity of
the interpolated surface on accuracy of the sample. Six
topographical surfaces were chosen, each with an
empirical value for complexity. Each surface was
interpolated 8 times at varying sampling densities
expressed in terms of the number of data points: 100, 225,
400, 625, 900, 1225, 1600, and 2025. They found that
mean absolute error decreased at a decreasing rate with
increasing sampling size. This relationship suggests that for

a given purpose there may be an optimal sample interval
at which sufficient relevant information is captured
without an excessively large sample. In that experiment,
contour maps were interpolated for the same area, from a
1:24 000 topographic sheet that features an eroded
syncline dipping to the northeast, located in the
Appalachian Mountains, USA. One map was derived using
elevations sampled at 50 m intervals in a grid pattern, and
the other map was derived using elevations sampled at
500 m intervals. Contour lines interpolated from the points
at 50 m intervals clearly portrayed the geology of the area
(Maltman, 1990), while on contour maps interpolated from
the points at 500 m intervals the geologicalal structural
pattern is completely lost.

This research evaluates the interpolation error as it is
related to density of sampling of 2D and 3D seismic data
sets.

Sampling Interval

The relationship between interpolation accuracy and
sampling density is complicated by the complexity of the
contour surface. Thus, application of the sampling
theorem which states that the sampling interval needs to
be less than half the cycle of the highest frequency present
in a distribution (Robinson et al., 1995; Brown, 1996;
Sheriff, 1991) dictates that increased complexity will
require increased sampling densities. In other words, the
higher the frequency of change of the subject to be
sampled, the closer the samples will need to be spaced to
achieve a given accuracy. This is also known as the cardinal
theorem or the Nyquist theorem (Sheriff, 1991).

Hypothesis

The hypothesis was tested that errors in interpolated
sample grids would be strongly related to the sample size
and spacing between picked lines. It was anticipated that
there would be an increase in interpolation error as the
distance between each of the sample lines was increased.
As in the experiments of MacEachren & Davidson (1987), it
was hypothesised that the relationship between error and
distance between manually picked lines would increase
slowly with distance at first but more rapidly with
increasing distance; i.e., with decrease in sampling density.
The hypothesis was also tested that errors in interpolated
sample grids would be related to the structural complexity
of the horizon. The three geological horizons that were
mapped for this study were thought to require varying
sampling densities to capture a given level of map
accuracy. This was tested in the experiments.

Methods

Data processing involved the following steps, which are
elaborated below. Three master stratigraphic horizons were
picked from every in-line and cross-line section on parts of
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Fig. 1. A part of a north-south cross-section of the Exxon 2D survey
in the Gulf of Mexico viewed from the east. Length of section shown
is approximately 10 km.

Fig. 2. (Top Right) Perspective view from the south west of the three
horizons (A, B, & C) within the 3D seismic block showing various
geological complexities including the seismic "footprint" in the data.

the 3D seismic data set with different structural
complexities (Figure 1) using LANDMARK's "Seisworks-3D"
software (Landmark Graphics Corp., 1998). These master
horizons were exported as database files with x, vy, z
coordinates to the ArcView geographic information system
(GIS) (ESRI, 1995) where subsampling and further 2D
spatial analysis was conducted including interpolation of
contour surfaces and generation of error surfaces and
statistics.

In ArcView GIS, the database files were converted into
master grid surfaces for each horizon (Figures 2 and 3).
Subsamples of x, y, z, data with varying sampling densities
(e.g. Figure 4) were selected from the three master grids
and were interpolated to create grids with the same area
and number of grid cells as the original master grid
surface.

The study area is located in South Timbalier in the Gulf of
Mexico. The block is approximately 10 km east west by 14
km north south by 10 km deep and is in a thick sequence
of sediments deformed by salt diapirs that have pushed up
into the upper sediments since the Jurassic Period causing
some folding and faulting in the overlying sediments
(Rowan and Weimer, 1998; McBride et al., 1998). For this
analysis, the master horizons were picked across faults
without the introduction of fault surfaces. The horizons
sampled were 6.4 km square and contained 65 536 data
points arranged as 512 points north south (in-line) by 128
points east west (cross-line).

Anisotropy of Data

The ratio of hydrophone spacing (12.5 m) to streamer
spacing (50 m) was of the order of 4:1, so the data array in
the original post stack master data set was anisotropic in
distribution. This irregular spacing called for special
processing (Shepherd, 1999) and two samples were
generated for each subsample spacing. These were defined
as transect and point samples. Transect samples consisted
of complete in-lines and cross-lines but point samples

Fig. 3. Master 2.5-D surface for horizon C. Contours show two-way travel times in milliseconds. Number of
data points, N, is 65 536

Fig. 4. (Above) Sample grids with corresponding interpolated surfaces for horizon C. For (a), sample size N =
9984, (b), N = 5056, (c), N = 169, and for (d), N = 64. Degree of generalisation increases with increasing line
or point spacing. For sample sizes <= 169 (c & d) the structural interpretation would change. The
discontinuity extending from the north-central edge to the southeast corner of the image is intercepted by
an apparent feature trending northeast.
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retained only the
intersections (single points in
a regular pattern) between
the in-lines and cross-lines.
Due to anisotropy, sample
spacings between in-lines
and cross-lines were equal in
distance in both orthogonal
directions but not equal in
number (4:1). It was decided
to make the transect sample
line numbers isotropic with
ratio of 1 north south in-line
for every 4th east-west
cross-lines  or  multiples
thereof. The transect sample
size is arrived at by use of the
formula:

N=iC+(-0c (1)

where N is the number of
data points in the sample, iis
the number of in-lines taken
for the sample, ¢ is the
number of cross-lines taken
for the sample, in these cases,
equal to the number of in-
lines, | is the number of in-
lines in the master horizon
data set, and C is the number
of cross-lines in the master

Fig. 5. (Top) Error distribution
for transect sample (Fig. 4b)
and map (Fig. 4b). The dark
areas are negative error and
white areas are positive
error. Arrow shows direction
of downward slope of
horizon C. The parameters
for Equation 1 are shown.

Fig. 6. (Above) Cross-section
of a difference surface (V)
evaluated by subtracting the
interpolated surface (U) from
the "truth” surface (T). The
shaded area (W) shows the
absolute difference between
the surfaces. The error
surface (V) was used to
calculate the standard
deviation of error statistic
and the absolute error
surface (W) was used to
calculate the mean error
statistic.

horizon data set. The
component in the equation (I - i) where iis subtracted from
I is necessary to avoid counting the data points at the
intersections twice (Figure 5). The values for i and c are
obtained by:

i=1/n )
c=Clan 3)

where n is the sample spacing for the in-lines. This takes
account of the data points included in the cross-lines but
not selected in the in-line spacings. 16 sample grids (8
transect and 8 point) were generated from each of the
three master horizons. An interpolated grid surface was
rendered from each of these 48 sample sets using a spline
interpolation algorithm in the ArcView software (ESRI,
1991). The number of cells in each of the interpolated
sample grids is on the order of 512? = 262,144 cells, being
identical to the number of cells in the master grid surface
(Figure 3). The grid cell size (12.5 m) was chosen to match
the distance between each in-line hydrophone data point.

It was decided that the spline interpolation algorithm was
the most appropriate interpolation method to be used in
these experiments. Preliminary tests were carried out on a
test point sample, N=64 (Figure 4d), to examine the two
different algorithms. These were spline and kriging
(Dubrule, 1983 and 1984). Results showed that the spline
method was more suitable for this project. Hutchison and
Gessler (1994) calculated interpolation error by running
interpolations with some data points withheld. For each of
these interpolations the root mean square error (RMSE) was
less for the spline-interpolated surface than for the

equivalent kriged surface. Regardless of which spline
interpolation algorithm was used it was assumed that the
outcome of this research would not be significantly
influenced.

Evaluating Accuracy of Interpolated Horizons

Ehlschlaeger and Goodchild (1994) measured error
distribution within a digital elevation model (DEM) by
computing the difference between elevations of surveyed
data points and elevation of the corresponding DEM pixel.
Graphs of the distribution of error showed the effect of
error sources. Fischer (1996) evaluated similar error maps.
The root mean square error (RMSE) utilised for the tests has
often been utilised in cartography to evaluate spatial error
in interpolation of spatial data (Morad et al. 1994). Hunter
and Goodchild (1995) discuss ongoing research into error
modelling in spatial databases.

Each interpolated sample grid surface was subtracted from
the corresponding master grid surface (differenced) to
obtain an error-grid surface, which maps the magnitude
and location of sampling error for each grid point. The
statistics for the mean absolute error and the standard
deviation of error were calculated, plotted, and analysed to
evaluate interpolation accuracy with varying sample
densities. Two error grids for each sample size were
generated. In the first, the absolute value of error for each
cell was mapped. In the second set of error maps, real error
was mapped. For each error grid, an overall statistical value
was calculated (Figure 6).

Regression of error on sample size and sample spacing was
used to examine how errors were related to various sample
intervals. Subsamples drawn from the error grids at areas of
varying geologicalal complexity were also subjected to
regression analysis to evaluate the hypothesis that errors
would be related to structural complexity (Figures 7 and 8).

Results

The results of the data interpolation experiments for both
transect and point samples clearly demonstrate a decrease
in map accuracy as sample size decreases (Table 1). This
decreasing accuracy shows up visually on the maps (Figure
4) for horizon C in the form of generalisation. For sample
sizes smaller than 169 an apparent northeast-trending

[ Horizon A | Horizon C
Transect Samples
sample [ mean standard| mean standard| mean standard
size error _deviation| error  deviation| error  deviation
36864 | 0.959 1.708 1.108 2.733 0.917 2.547
19456 1.916 3.22 2.429 5.33 1.981 5.146
12999 [ 2.551 4.201 3.583 7.186 2.862 7.656

Horizon B |

9982 3.152 5.185 | 4.598 9.379 3.962 10.611
8151 3.561 5.671 5063 10.033 | 5.202 13.688
6919 3.998 6.31 6.162 12464 | 5591  11.502
5679 4.371 6.731 6.637 12.61 7.342  15.208
5056 4.537 6.837 7.235 13.974 8.07 17.298

Point Samples
4096 2.408 3.73 2.921 5.896 2508  6.222
1024 3.663 5.393 | 4.682 8.289 | 4.281 9.929

441 4.437 6.311 6.472 10.724 | 5934 12913
256 4.972 6.951 7.768 13.086 | 7.636  15.938
169 5.508 7.635 9.067 14.918 | 10.154 20.492
121 6.657 9.155 | 10.008 16.561 | 10.159 18.618
81 7.505 10.16 | 11.654 18.321 | 1245 21.668
64 6.923 9.538 | 13.394 20.758 | 14.949 26.987

Table 1. Mean and standard deviation statistics for both transect
and point samples for all 3 horizons (Shepherd, 1999).
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feature is introduced dividing and obscuring the fault that
extends across the north-eastern third of the image. The
generalisation in these maps would likely lead to an
entirely different structural interpretation than with use of
maps derived from full resolution data.

When "standard deviations of error" are plotted against
"sample size" for the transect samples (Figure 7) and the
point samples (Figure 8), the systematic decrease in error
with increase in sample size becomes clear. Trend lines were
calculated by least squares computational methods for
both the mean absolute error and the standard deviation of
error in the three horizons. The best-fit trend lines were
determined by maximum explained variance (R?) values and
graphical evaluation of regression residuals using various
univariate models. Power functions fit best for Horizons B
and C, but the best fits for Horizon A for both, the transect
and point samples, for the standard deviation statistic,
were logarithmic functions. Horizon A had less concavity
(on linear scales) to the error versus sample size trend than
the other two horizons, presumably reflecting the simple
nature of the stratigraphic structure.

A comparison was made between the standard deviation of
error for Horizons A, B, and C. There were substantial
differences in the standard deviation statistics between the
horizons, probably due to varying geological complexity
between the horizons. Horizon A has no faults but may
have a higher frequency of data while Horizons B and C
each have faults of differing relief or throws. There was a
greater decrease in accuracy with structural complexity for
the point samples than for the transect samples (Figure 4a'
and 4b"). If only power functions are considered then a
possible trend between their constants and exponents can
be analysed. This is justified because the regressions are all
fairly strong with R2 > 0.97 for all values. The general form
of the power function is:

E=aN* (@)

Where E is interpolation error, N is sample size, a is a
constant representing the standard deviation of error at
N=1, and b is an exponent expressing the rate of change in
log E with log N.

The fact that the relationship between sample size and
error, is inverse and alters exponentially is supported by the
negative values (b<1) of the exponent b in the power
functions. For the transect samples, the value of b ranges
from -0.697 (horizon A) to -0.945 (horizons C) respectively,
probably due to the much larger sample sizes whereas, for
the point samples, the values are lower, being from -0.237
(horizon A) to -0.337 (horizon C), for the much smaller
sample sizes. The distribution of the sampled data points
could also be a factor and would require further
investigation. The difference between the values of the
constant a for the transect and the point samples is very
great, likely due to sample data distribution as well as size
(Table 2).

[ Horizon A[ Horizon B[ Horizon C| able 2.
Transect Samples Relationship
constant a 2907.8 15156 56984 between the
exponentb | -0.6965 | -0.8114 | -0.9448 | constant aand
Point Samples the exponent b
constanta | 26.975 70.48 102.59 | forall3
exponentb | -0.2371 -0.3033 | -0.3368 horizons.

For the standard deviation of error, values of the constant
a and exponent b in Equation 4 show an apparent trend
that supports the second hypothesis that error increases
with structural complexity. Based on three sample-horizon
experiments, values of a and b increase in value from
horizons A to C. This empirical relationship appears to be
linear for both the constant and the exponent in the point
samples and for the exponent in the transect samples but
is exponential for the constant in the transect samples
(Shepherd, 1999). Although more experiments are needed
to validate the relationship, this trend corresponds with
increasing structural complexity.

One application for these results is to determine the
interpolation accuracy of a series of parallel 2D seismic
lines at equal intervals. For example parallel 2D lines were
surveyed north of the Stag Oil Field in the Eastern Dampier
Sub-Basin off the coast of Western Australia with a line

Fig. 7. Regression analysis for
transect samples showing
relationship between transect
sample size and standard
deviation of error plotted on
logarithmic scales on both
axes.

Fig. 8. Regression analysis for
point samples showing
relationship between transect
sample size and standard
deviation of error plotted on
logarithmic scales on both
axes.
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spacing of approximately 500
metres (Figure 9); equivalent to the
transect sample spacing shown by
the grid (a) and the map (a') in
Figure 4. Two-way travel time
contours were interpolated using
the LANDMARK Seisworks
package. We can determine the
accuracy of interpolation of this
example from the regression
analysis (Figure 7) and obtain an
estimate of errors in the
calculations of such things as
volume of oil or gas in place and
factor this into risk analysis
assessments.

Fig. 9. Arrangement of
parallel seismic sections
from a 2D survey north of
the Stag Oil Field in the
Eastern Dampier Sub-basin
off the coast of Western
Australia. Closest line
spacing is approximately 500
m.

Conclusions

In two-dimensional analyses, it has previously been shown that
map accuracy varies inversely with sample size on the one
hand, and with the combination of sample size and feature
complexity on the other. This study presents evidence that
these relationships also apply to the accuracy of mapping
three-dimensional features. Furthermore, this study provides a
basis for quantifying this relationship. As hypothesised, the
rate of decrease in interpolation error decreased with increase
in sample size. This was found to be true for both types of
sample sets: points and transects and corroborates the findings
of MacEachren and Davidson (1987). However, there was a
greater change in the rate of decrease in mean error and
standard deviation of error for the point samples than for the
transect samples. This is supported by the values of the
exponent b in the power functions.

Sample size is not the only criterion that determines
interpolation accuracy. The distribution of the data points also
has to be taken into account. For example, the smallest transect
sample size (N=5056) and the largest point sample size
(N=4096) are similar in terms of sample size alone but radically
different in terms of data point distribution.

The hypothesis that error increases with structural complexity
is also supported by the analysis. The mean absolute error and
the standard deviation are greater for horizons B and C than
for horizon A. This is presumably because horizon A has no
faults and a lower range of two-way travel times. All the graphs
show a curvilinear trend (a nearly straight line on logarithmic
scales) of summary errors (mean absolute or standard
deviation) versus sample size (transect or point) where the slope
is steepest at the smaller sample sizes. Power functions with a
negative exponent fit most of these trends quite well.
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